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Abstract Blur plays an important role in the perception of camera image quality. Gener-
ally, blur leads to attenuation of high frequency information and accordingly changes the
image energy. Quaternion describes the color information as a whole. Recent researches in
quaternion singular value decomposition show that the singular values and singular vectors
of the quaternion can capture the distortion of color images, and thus we reasonably suppose
that singular values can be utilized to evaluate the sharpness of camera images. Motivated
by this, a novel training-free blind quality assessment method considering the integral color
information and singular values of the distorted image is proposed to evaluate the sharp-
ness of camera images. The blurred camera image is first converted to LAB color space
and divided into blocks. Then pure quaternion is utilized to represent pixels of the blurred
camera image and the energy of every block are obtained. Inspired by the human visual
system appears to assess image sharpness based on the sharpest region of the image, the
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local sharpness normalized energy is defined as the sharpness score of the blurred cam-
era image. Experimental results have demonstrated the effectiveness of the proposed metric
compared with popular sharpness image quality metrics.

Keywords Hypercomplex · Singular value decomposition (SVD) · No-reference (NR) ·
Image quality assessment (IQA) · Energy

1 Introduction

The rapid development of Internet business and multimedia technology makes images play
an important role in human daily life. However, images are often degraded by different
kinds and levels of distortion in the procedure of acquisition, transmission, compression,
reconstruction and storage. Hence, it is urgent to develop effective and efficiency image
quality assessment(IQA) metric to assess image quality so that it can be used for many
image processing applications, such as image compression [31], search [47], forensics [17, 51].

In the past decades, scientists have proposed many image quality metrics which can be
basically classified into subjective and objective quality assessment methods. Subjective
quality assessment is creditable for human beings are the final consumers, but it is expen-
sive and difficult to implement in-service applications. Therefore, objective IQA model has
attracted more attention in recent years. Depending on the validity of reference images,
objective IQA metrics can be further divided into full reference (FR), reduced-reference
(RR) and no reference/blind (NR) quality assessment methods [15]. FR IQA methods uti-
lize the distortion-free image to assess the distorted image, which works on the assumption
that the reference image exists [1].

But in most cases, such as video on demand business or broadcast service on the Internet,
only the deteriorated image can be acquired, this kind of IQA models belongs to NR/blind
IQA methods. Furthermore, according to the prior distortion types of the image, blind IQA
models can be further divided into distortion-specific and general purpose methods. Typi-
cal distortion-specific NR IQA methods are devoted to blurriness/sharpness [2, 8, 19, 35,
41], blockiness [21], ringing effect [22], contrast distortion [7, 12], etc. Recently, general-
purpose blind methods have been an popular research field. Many blind IQA methods have
been proposed in [4, 10, 11, 18, 24–26, 34, 42, 50].

Different from the aforementioned methods, RR IQAmethods use partial of the reference
image to assess the deteriorated image which resorts to a good tradeoff between effective
and efficiency. Many RR IQA models have also been proposed in [12, 40]. Yet in most real-
world scenarios, the original image (full or partial) is not available. By contrast, NRmethods
can assess distorted image quality without original image, so they are highly desired in
reality applications. This paper focuses on NR camera sharpness assessment.

Sharpness is a key factor in the process of evaluating the quality of camera images [42].
Although the causes of blur are variety (e.g. target simple motion or complex motion, image
compression and camera out-of-focus), blur is typically characterized by the propagation
of the edge width and consequently caused the high frequency information attenuation.
Mariziliano et al. [23] proposed a sharpness method based on the analysis of the sharp edges
and adjacent regions in an image. The Sobel operator was used to find strong edges and
their positions, then the local blur values over all edges found was used to obtain the sharp-
ness score. Vu et al. [45] devised a fast image sharpness (FISH) metric by using wavelet
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transformation to evaluate the blur level of distorted image. The input distorted image was
first decomposed via the discrete wavelet transform (DWT), then the energies of the DWT
subbands was computed. Finally, a weighted function for the three-level log-energies was
utilized to obtain the final sharpness score.The concept of Just Noticeable Blur (JNB) was
introduced by Ferzli et al. [5]. The JNB metric combined a probability summation model
with the just noticeable blur to evaluate the amount of blurriness in distorted images. An
extension of JNBM was the cumulative probability of blur detection (CPBD) metric which
through pooling the localized probability of blur [27]. Hassen et al. [14] addressed a sharp-
ness metric by utilizing Local Phase Coherence. For the blur destroyed the LPC structure of
an image, the sharpness can be computed by the strength of LPC.

A sharpness metric named the singular value curve (SVC) was proposed by Sang et al.
[36]. Since blur can affect the singular values significantly, and the SVC can be utilized to
evaluate the degree of blur. The spectral and spatial sharpness (S3) metric was addressed
by Vu et al. [46]. The attenuation degree of high-frequency information was measured by
the slope of magnitude spectrum, and contrast was measured by the total spatial variation.
Then a weighted geometric mean was used to integrate the total spatial variation and the
slope of the magnitude spectrum for image sharpness assessment. Li et al. [19] provided
a blind image sharpness method based on discrete orthogonal moments. The gradient of a
blurred image is first computed, then the Tchebichef moments are computed to describe
image shape. Finally, the variance-normalized moment energy is defined as the image blur
score. A NR sharpness method in the autoregressive parameter space was proposed by Gu
et al. [8]. It first calculated the energy and contrast differences in the locally estimated AR
coefficients in a point-wise way, then the image sharpness score is acquired by percentile
pooling.

Although existing image blur metrics are good in simulated blur distortion, they poorly
perform for realistic camera image assessment, which can be found from experimental
results in Section 4. Realistic camera images contain not only typical distortions which is
easy to modeled, but also more complicated and realistic ones. Sample realistic camera
images chosen from the BID database [3] are illustrated in Fig. 1.

It can be observed from the Fig. 1 that realistic camera blur distorted images contain
many categories of blur distortions. Image (a) may be classified into the simple motion
class that could by fairly considered linear caused by camera movements. Image (b) consists
of complex motion blur which caused by complex motion paths. Image (c) belongs to out
of focus category which caused by the whole image is out of focus. Image (d) contains
complex blur distortion which may contains any other types of degradation. Hence, it is
challenging to evaluate realistic camera blur images.

In this work we focus on blind realistic camera images sharpness evaluation. Compared
with previous works, this paper is the first work to propose a blind sharpness of camera
images based on quaternion singular values decomposition which considers the inevitable
influence of color information on the sharpness evaluation. Furthermore, the proposed blind
quaternion singular value decomposition metric (BQSVD) can acquire sharpness scores
highly consistent with the human visual system (HVS).

The remainder of this paper is arranged as follows. In Section 2, the theories of the
related algorithms employed in this paper is presented. The description of the proposed
metric is introduced in Section 3. In Section 4, thorough experiments are conducted on the
BID database to verify the performance of our BQSVD model with recently devised blind
sharpness IQA methods. Future works and conclusions are given in Section 5.
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(a) (b)

(c) (d)

Fig. 1 Sample realistic blur images from the BID database [3]. a Simple motion blur. b Out of focus blur.
c Complex motion blur. d Other complicated distortions

2 Quaternion singular value decomposition

2.1 Feature extraction by singular value decomposition

Objective quality assessment method generally consists of two steps, including feature
extraction and feature pooling to obtain a scalar index as image quality score. First step,
features extraction plays a critical role for objective perceptual quality assessment which
should effectively reflect the changes of image quality. The second step decides the rela-
tionship between the features and the image quality. Various transforms can be utilized to
extract features, such as singular value decomposition (SVD) [39], discrete wavelet trans-
form (DWT) [26], discrete cosine transform (DCT) [34], discrete Fourier transform (DFT)
[29], etc. Basically speaking, the changes in transformation coefficients can be utilized to
measure visual quality. For DCT and DFT transforms, base images are same for all the
images in the frequency domain. However uses the unique base images for each image.
Hence, SVD is more advantageous for description visual signal and has been successfully
applied to statistics and signal processing field [30].

SVD is a kind of famous transformation in linear algebra. Formally, the mathematical
definition of SVD for an image matrix Wm×n can be defined as

Wm×n = Um×mSm×nVn×n (1)
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where U and V are unitary matrix, S is a diagonal matrix, the diagonal entries σi are listed
in descending order and known as the singular values of W. We can define U and V to be

U = [u1, u2, · · · um]
V = [v1, v2, · · · vn]. (2)

The columns of U and V are orthonormal bases. The matrix UV T can represent the
image structure (the base image), while the singular values σi are the weights assigned to
these base images [28]. To visually view the effect of singular value and singular vector on
the image, we show examples in Figs. 2 and 3. Figure 2 shows the singular values σi are
mainly reflect the luminance variations in images, which can also reflect variations in the
frequency components of the image. We can observe from Fig. 3 that the first few singular
vectors determines the image main structure, while following decide the image details [28].

Since singular vectors and singular values can describe features of images, which may
be used for quality assessment. In the literature, several SVD-based image quality meth-
ods have been proposed. Shnayderman et al. [39] proposed an SVD-based gray IQA metric
mainly focus on computing the distance between the singular values of the distorted image
block and the original image block. In [43], the authors used the singular value decompo-
sition algorithm to calculate the ratio of the first and second largest eigenvalues to measure
image distortion. Qureshi et al. [33] proposed a blind blur assessment method based on
higher order singular values. A third-order tensor was utilized to exploit the spatial and

(a)

(d)

(b)

(e)

(c)

(f)

Fig. 2 Effect of changing singular values σ . The original image is shown in (a). The number of σi set as (b)
i = 512. (c) i = 200. d i = 100. e i = 30. f i = 10
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(c)

(f)

Fig. 3 Effect of changing UVT values. a Child-swimming image. The number of group UiV
T
i set as (b) i =

512. c i = 300. d i = 100. e i = 50. f i = 10

inter-channel correlations of an RGB color image for evaluating the quality of the distorted
image. Recently, Wang et al. [48] proposed an image quality metric based on the standard
deviation of singular values for it can effective reflect image structure change.

2.2 Quaternion model

The concept of quaternion was proposed by Hamilton in 1843 [13]. Quaternion is an expan-
sion of complex, namely hyper complex. A quaternion is consisted of two parts, the real
part and the imaginary part which can be described by

Q = x + yi + zj + wk (3)

where i, j and k are the imaginary units, x, y, z and w are real numbers. Due to the relations
between the three imaginary parts, the multiplication of quaternions does not satisfy the
commutative law. The multiplication rules between the three imaginary numbers are:

ki = −ik = j

jk = −kj = i

ij = −ji = k

i2 = j2 = k2 = ijk = −1

(4)

There are other notations for quaternions [13]. Another representation of a quaternion Q

can be defined as

Q = α + βj (5)
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where α = x + yi ∈ C and β = z + wi ∈ C. This is known as Cayley-Dickson notation
for quaternion matrix. The conjugate of a quaternion is defined as

Q = x − yi − zj − wk. (6)

A pure quaternion is the case with a null real part (the first real number x = 0). Pure
quaternion is widely used to represent color image, which the three channels of the color
image (red, green and blue) [37] are represented by the three imaginary parts. So the pure
quaternion represents a color image I as following:

QI = FRi + FGj + FBk (7)

where R, G and B denotes the three channel of red, green and blue, respectively.

2.3 Quaternion singular value decomposition

SVD is used to decompose a matrix. Hence, it can be directly applied on gray images.
For a color image, one way is to directly operate SVD on one channel of the color image,
and another way is through transforming the color image to extract the brightness level
information before using the SVD method to deal with. Both of the two ways cannot handle
the color image as a whole, neglecting the color information of the color image. However,
the quaternion model can describe the color image information as a whole, according to the
definition of SVD on the complex adjoint matrix, quaternion singular value decomposition
(QSVD) can be utilized to assess color images quality [32]. QSVD of a quaternion Q is
defined as follows [37]:

FQ(m,n) = Um×mSm×n

( ∑
r 0

0 0

)
V �

n×n (8)

U = [u1, u2, · · · um]
V = [v1, v2, · · · vn], (9)

∑
r

= diag(σ1, σ2, · · · , σr ) (10)

where
∑

r is a diagonal matrix, the diagonal entries σi are the singular values of the quater-
nion matrix Q(m, n) and r is the rank of Q(m, n). V and U are the right and left singular
vectors of quaternion matrix Q(m, n) and elements of these two unitary matrixes are all
quaternions. ∗ denotes the conjugate transpose.

To intuitional understanding the gray scale SVD which only concentrated on luminance
information, and QSVD combined luminance and chrominance information into the IQA
model, we give an example in Fig. 4. The subsequent formula is used to construct the
distortion map [39].

D(i) =
√√√√ P∑

i=1

(Sdis(i) − Sorg(i))2 (11)

where Sorg denotes the original image blocks’ singular values, Sdis denotes the singular
values which are obtained by gray scale SVD and QSVD method of the distorted block, P
is the size of block . The set of distances Di , when displayed in graph by mapping Di values
to the range [0, 255], a gray scale image can be obtained which represents distortion map.

It can be observed from the figure that the gray scale SVD method which only extracts
the luminance components and discards many effective components, even can not intu-
itional represent the distortion level. However, QSVD performs better, which implies that
the chrominance information should be considered when assess color image quality.
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(a)

(c)

(b)

(d)

Fig. 4 a and (b) are the child-swimming image and the corresponding blur distortion image. c and (d) are
the distortion maps of the gray scale SVD and QSVD of the blur distorted images, respectively

3 The proposed blind quality metric

So far, many IQAmetrics have been proposed for objective IQA. They are good in simulated
distortions, but poorly perform for realistic camera image assessment. Camera images have
complex distortion, like the effect of color crosstalk which causes blur with desaturation
is difficult to measure [16]. In this paper QSVD is employed to evaluate the sharpness of
realistic camera images. The theoretical foundation is that Frobenius norm of hyper complex
matric can be used to represent the energy of color camera images, and we have a reason to
believe energy change can be effectively reflect the extent of blur.

3.1 Color space transformation

In our work, a novel hyper complex SVD-based blind camera image assessment metric is
proposed. Figure 5 shows the flowchart of the proposed metric. It includes three main stages.
First, the input blurred image is converted into LAB color space, and is represented by
pure quaternion. Second, two components are calculated: 1) quaternion singular values for
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Fig. 5 Flowchart of the proposed camera image sharpness metric

blocks; 2) variances of the realistic blur camera image for blocks. Finally, effective pooling
method is utilized to acquire the blur score of the input blurred camera images.

According to the previous researches, scientists found that the HVS is much more sen-
sitive to the change of luminance than the change of chrominance [39]. Therefore, most
previous IQA methods were devised based on the mathematical modeling. Our metric con-
siders the inevitable influence of color information on the sharpness assessment. So, in the
proposed metric, the blurred camera image is first converted into widely used LAB color
space [38].

Since the LAB color space is designed to approximate human vision system, unlike the
RGB and CMYK color space, it includes all the colors visible to the naked eye and creates a
model that is independent of the device [9]. The LAB model is a three- dimensional model,
and L, A and B nonlinear relationship is used to simulate the nonlinear response of the
eye. The three coordinates of LAB represents the color brightness, the transition between
red and green, and the transition between yellow and blue. There is no simple formula for
conversion between RGB and LAB, because the RGB model is dependent on the device.
Therefore, the RGB values must first be converted to the data which is independent of the
device, then it can be converted to the LAB color space.

The transformation can be defined as follows [38]:

B = 200[f (Y/Yn) − f (Z/Zn)]
A = 500[f (X/Xn) − f (Y/Yn)]
L = 116f (Y/Yn) − 16

(12)

where

f (t) =
{

t1/3 if t > ( 6
29 )

3

1
3 (

29
6 )2t + 4

29 otherwise
(13)

where Xn, Yn and Zn are the CIEXYZ tristimulus values of the reference white point.
Under Illuminant D65, the values are Xn = 95.047, Yn = 100.000, Zn = 108.883.

The domain of the function f (t) is divided into two parts which is to prevent an infinite
slope at t = 0. f (t) was supposed to match both value and slope of the t1/3 part of the
function at t0. In other words:

t
1/3
0 = at0 + b, (14)

1

3
t
−2/3
0 = a. (15)
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Equation (14) matches in value and (15) matches in slope. The above two equations can be
solved for a and t0:

a = 1

3
δ−2 = 7.787037 . . . (16)

t0 = δ3 = 0.008856 . . . (17)

where δ = 6/29 [38].

3.2 Quaternion representation and image energy

After the transformation, the pure quaternion is used to express every pixels of the
transformed blurred camera image:

FQ = FLi + FAj + FBk (18)

where L, A and B are the three channels of LAB. It is well known that Frobenius norm can
be utilized to represent the energy E of a matrix FQ:

E = ‖FQ‖F . (19)

Therefore, Frobenius norm of hyper complex matric FQ can be used to represent the energy
of color camera images. Following the definition of the hyper complex SVD, for any hyper
complex matrix FQ ∈ HM×N , there exists two unitary hyper complex matrix U and V ,

FQ = U

( ∑
r 0

0 0

)
V � (20)

where U ∈ HM×M, V ∈ HN×N . Superscript � denotes conjugate transpose,
∑

r is a diago-
nal matrix that contains the number of r non-empty values. According to (19) and (20), the
energy of color camera image can be defined as:

E = ‖FQ‖F

= ‖U ·
( ∑

r 0
0 0

)
· V �‖F

= ‖U‖F · ‖
( ∑

r 0
0 0

)
‖F · ‖V �‖F

= ‖
( ∑

r 0
0 0

)
‖F .

(21)

Since U , V is unitary hyper complex matrix, their Frobenius norm equals to 1. Accord-
ing to (21), the energy of color camera image can be decided by the Frobenius norm of
hyper complex matrix singular values. In other words, the singular values of hyper complex
matrix denotes the energy feature of the color image, and it can be utilized as benchmark
for assessing color image quality. It serves as the theoretical basis for our proposed blind
camera sharpness assessment metric.

Blur leads to the decrease of high frequency information of the image, and the quaternion
singular values change accordingly account for the variations of energy. To illustrate the
relation between quaternion singular values and blur, an example is shown in Fig. 6, in
which three realistic camera images with different blur scales and their energy are shown. It
is can be observed from the figure that the energy change with the degree of blur. Therefore,
the energy can be utilized to test the degree of sharpness with the same scene.

To acquire a blind sharpness method, the influence of image scene or the complex of
image content should be considered. Inspired by Hassen et al. research [14], humans seem
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(a) (b) (c)

Fig. 6 Three realistic camera images and their average energies of blocks for the same content images with
different extent of blur

to make judgement of image quality based on the sharpest region, the method in [25] is
adopted to select a collection of blocks which contains rich information. Specifically, an
image I is preprocessed by the natural scene statistical (NSS) model as follows [49]:

Î (m, n) = I (m, n) − μ(m, n)

σ (m, n) + 1
(22)

where m and n are spatial indices, and

μ(m, n) =
K∑

k=−K

L∑
l=−L

ωk,lI (m + k, n + l) (23)

σ(m, n) =
√√√√ K∑

k=−K

L∑
l=−L

ωk,l[I (m + k, n + l) − μ(m, n)]2 (24)

are the local mean and standard deviation, where ω = {ωk,l |k = −K, · · · ,K, l =
−L, · · · , L} is a 2D Gaussian weighting function. Because σ(m, n) contains rich image
structure information, it is used to gauge the local sharpness.

In this work, we utilize the mean opinion score(MOS) as the subjective evaluation, which
is obtained by averaging subjective scores given by human observers. An example shown
in Fig. 7a–d, these images have similar MOS values with similar extent of blur, but their
energies differ significantly. Hence, to eliminate the influence of image scene, the local
image sharpness is utilized to normalize the total energy. Figure 7e shows the energy of
the image (a)-(d), and the corresponding local sharpness normalized energy is shown in
Fig. 7f. We can seen from the Fig. 7e that the original energy without normalization fails to
predict the sharpness of image with different scenes. But after using the local sharpness (24)
normalized the energies, the predicted sharpness scores are similar. Hence, it can effectively
assess the blur level of images with different image scenes.

3.3 Sharpness score based image energy

In summary, the proposed BQSVD algorithm can be summarized below. For a realistic blur
camera image in RGB color space, it is first converted into LAB color space. Next, the
image is segmented into non overlapping blocks of the same size for the essential low order
statistics of images can be captured by local image patches. The size of the block used
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(a) (b)

(c) (d)

(e) (f)

Fig. 7 Four realistic camera images with similar MOS values together with the original energy and local
sharpness normalized energy

in the proposed metric is 8 × 8, since the standard block size used in the JPEG compres-
sion and many image processing applications are all 8 × 8 based. The pure quaternion is
used to represent the three channel L, A and B . The block set is denoted by Cj , where
j ∈ 1, 2, 3, · · · , P , P = 3∗ �M = m/8�×�N = n/8�, m and n are the image dimensions,
and �·� is the floor operation. Then the local sharpness of the blocks in Cj are calcu-
lated. Because the HVS generally inclines to make judgement of the whole image sharpness
according to the sharpest regions [6, 45, 46], the t% highest local sharpness blocks are
utilized to obtain the sharpness score as following:

SBQSV D =
∑T

k=1 Ek∑T
k=1(

∑∑
(i,j)∈patchk σ (i, j))

(25)

where T = �t% × P � denotes the number of first high local sharpness blocks, SBQSV D is
the sharpness score, Ek and σ denote the energy and local sharpness of the kth block which
can obtained by (21) and (24), respectively.
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4 Experimental results and discussions

4.1 Experimental settings and protocol

The performance of the proposed method is tested on the realistic blur database (BID)
camera image quality database [3]. The images in this database are obtained for a various
camera apertures, scenes, varying exposure times and lighting conditions. The BID database
includes 586 images with resolutions ranging from 640 × 480 to 2816 × 2112 pixels which
contains many kinds of complex and realistic blur. And mean opinion scores of the images
in BID database are ranging from 0 to 5.

According to the VQEG suggestions [44], four criterions and five parameter nonlin-
ear fitting function are utilized to test the performance of the proposed metric. The four
criterions including Pearson linear correlation coefficient (PLCC), Spearman rank order cor-
relation coefficient (SRCC), Kendall’s rank correlation coefficient (KRCC), and root mean
square error (RMSE).

The first Pearson’s (linear) correlation coefficient (PLCC) for prediction accuracy, which
is defined as

PLCC =
∑

i (qi − q̄)(si − s̄)√∑
i (qi − q̄)2

∑
i (si − s̄)2

(26)

where si and s̄ are the i-th image’s subjective rating and the mean of the overall si ; qi and
q̄ are the i-th image’s converted objective score after nonlinear regression and their mean
value.

The second Spearman’s rank ordered correlation coefficient (SRCC) for prediction
monotonicity. SRCC is calculated by

SRCC = 1 − 6

N(N2 − 1)

N∑
i=1

d2
i (27)

where N denotes the image number in the testing database; di is the difference between the
i-th image’s ranks in objective and subjective evaluations.

The third Kendall’s rank correlation coefficient (KRCC) is another criteria to measure
the prediction monotonicity:

KRCC = Fa − Fd

1/2F(F − 1)
(28)

where Fa and Fd denote the number of accordant and dissonant pairs in the testing data set.
The last root mean square error (RMSE) is another criteria to measure the prediction

accuracy. The RMSE is calculated by

RMSE =
√
1

n

∑
i

(xi − yi)2 (29)

where xi denotes MOS values and yi denotes the predicted score. In order to calculate these
values, a monotonic logistic function is adopted to provide a mapping between objective
scores and subjective scores [44].

f (y) = α1

(
1

2
− 1

1 + eα2(y−α3)

)
+ α4y + α5 (30)

where y denotes the original objective score, f (y) denotes the fitted score, and αi {i =
1, 2, 3, 4, 5} are regression parameters to be fitted.
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Fig. 8 The computed curves of PLCC with different percentage of high local sharpness blocks

Because the proposed metric evaluates image sharpness based on the sharpest blocks, it
is necessary to decide the optimal percentage of blocks(t% × K). Therefore, we conducted
an experiment on BID database to observe how the metric performs with the change of the
number of blocks. Generally, the selected areas should not less than one fifth of the image
size for maintaining the semantic information. We also test the number of blocks from 40 %
to 100 % and the simulation results are shown in Fig. 8.

Figure 8 shows that PLCC values increase with the number of blocks range from 20 %
to 40 %. Then with the number of blocks increase, PLCC values decrease inversely. It
illustrates that HVS tends to determine the sharpness of an image based on the sharpest
areas [6, 45, 46]. Based on this finding, the proposed method employs 40 % high variance
blocks in implementation and is applied in the subsequent experiments.

Table 1 Performance
comparison with seven
state-of-art blind sharpness
metrics on the BID database

Metric PLCC SRCC KRCC RMSE

S3 [46] 0.4270 0.4253 0.2921 1.1320

LPC [14] 0.3901 0.3161 0.2161 1.1528

MLV [2] 0.3103 0.3201 0.2209 1.1901

SVC [36] 0.4295 0.3581 0.2412 1.1306

CPBD [27] 0.2704 0.2711 0.1820 1.2053

JNBM [5] 0.2608 0.2317 0.1582 1.2086

ARISM [8] 0.1841 0.1841 0.1258 1.2305

BIBLE [20] 0.3816 0.3846 0.2611 1.1572

Marziliano [23] 0.1352 0.0827 0.0535 1.2404

BQSVD (Pro.) 0.4988 0.4934 0.3379 1.0851The best performed metric is
highlighted with boldface
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Table 2 The performance of the
proposed method using different
color space representation

Color Space PLCC SRCC KRCC RMSE

Gray Scale 0.3386 0.3066 0.2069 1.1780

RGB 0.3439 0.3072 0.2069 1.1756

YIQ 0.3308 0.3013 0.2029 1.1815

LAB 0.4988 0.4934 0.3379 1.0851

4.2 Comparison with blind sharpness IQA metrics

In this section, the proposed model is carried out on the BID database and compared with
the popular blind sharpness metrics, including MLV [2], S3 [46], ARISM [8], BIBLE [20],
JNBM [5], LPC [14], Marziliano [23], SVC [36] and CPBD [27].

Table 1 lists the results, and the best performance results are highlighted with boldface.
It is known from the table that our metric produces the best results, which produces the
highest SRCC, KRCC, PLCC and lowest RMSE. S3 and SVC also produce better results
than the rest of blind sharpness metrics.

To confirm the effectiveness of the proposed BQSVD, we compare our metric with
the gray scale SVD method. Experimental results are shown in Table 2. We can observe
that the proposed BQSVD model correlates highly with human visual perception of image
sharpness, and it is remarkably superior to the gray scale SVD method. The SRCC value
of the gray scale SVD method is 0.3066, while our metric is 0.4934. The performance
improvement of the proposed method is larger than 37.9 % relative to the gray scale SVD
method. Just as we discussed in Section 2.3, QSVD combines luminance and chrominance
information into the IQAmodel and it can better describe the degree of the image distortion.

In the proposed method, the input color image is first converted to the LAB color space.
In order to illustrate the necessity of the color space transformation, an experiment is con-
ducted on the BID database. Pure quaternion is utilized to express image in RGB space
and YIQ space [27] and the simulated results shown in Table 2. It can be observed from
the table that LAB color space obtains best results. Just as analyzed before, the LAB color
space includes all the visible colors for the human eye and is more suited to represent the
color image.

Table 3 Performance
comparison with eight popular
general purpose blind methods
on the BID database

Metric PLCC SRCC KRCC RMSE

BIQI [26] 0.4423 0.4024 0.2730 1.1228

DESIQUE [49] 0.2908 0.2924 0.1982 1.1978

NIQE [25] 0.4608 0.4584 0.3089 1.1111

BRISQUE [24] 0.2516 0.2138 0.1412 1.2117

DIIVINE [26] 0.3310 0.3427 0.2300 1.1814

BLLINDS-II [34] 0.0795 0.0870 0.0593 1.2480

CORNIA [4] 0.4611 0.4643 0.3110 1.1109

NFERM [11] 0.4738 0.4679 0.3183 1.1025

BQSVD (Pro.) 0.4988 0.4934 0.3379 1.0851The best performed metric is
highlighted with boldface
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4.3 Comparison with general purpose blind IQA metrics

To verify the effectiveness of the proposed method, in this part, we compare our metric with
the well-known general purpose blind IQA methods, including Distortion Identification-
based Image Verity and INtegrity Evaluation (DIIVINE) [26], Codebook Representation
for No-Reference Image Assessment (CORNIA) [4], NR Free Energy based Robust Met-
ric (NFERM) [11], Blind Image Spatial QUality Evaluator (BRISQUE) [24], Blind Image
Quality Index (BIQI) [26], BLind Image Integrity Notator using DCT Statistic (BLIINDS-
II) [34], Natural Image Quality Evaluator (NIQE) [25], blind image quality assessment

(a)

(b)

Fig. 9 Plots of the PLCC performance comparisons our blind BQSVD metric with popular IQA metrics on
the BID database. a Comparison with bind sharpness metrics. b Comparison with blind general purpose IQA
metrics
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method based on Weibull statistics of log-derivatives of natural scenes (DESIQUE) [49].
Table 3 lists the experimental results, where the best results are highlighted with boldface.

It can be observed from the table that our metric produces the best results on the BID
database. It further verifies the superiority of our method over the state-of-art general pur-
pose blind IQA methods with respect to sharpness evaluation. NFERM [11] also creates
promising results, and it outperforms the remaining blind general purpose blind quality
assessment metrics.

Plots of the performance comparison are shown in Fig. 9. The vertical coordinate-axis Y
represents the PLCC values of the compared algorithms. Figure 9a shows the PLCC values
of the proposed method compare with the blind sharpness metrics, and Fig. 9b shows the
PLCC values of the proposed method compare with blind general purpose IQA methods. It
easily to find from the Fig. 9 that our metric get the highest accuracy of prediction.

We also conduct experiments on different kinds of real camera images deteriorated by
different levels of blur distortion. Figure 10 shows four realistic blurred camera images
with different subjective evaluate scores(MOS) and their sharpness scores obtained by the
proposed method BQSVD. In Fig. 10, the strength of blur increase from (a) to (d), which
also can be found from their MOS values. It can be seen from the figure that the proposed
BQSVD method produces sharpness scores that decrease from (a) to (d), so the experiment
results are highly consistent with human visual system.

(a)

(c)

(b)

(d)

Fig. 10 Four realistic blurred camera images and predicted objective scores by our proposed method
BQSVD
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5 Conclusions

In this paper, a blind quality index for camera images sharpness based on quaternion sin-
gular value decomposition is proposed. Comparison of our BQSVD with popular blind
sharpness and general purpose blind measures are conducted on the BID database. Besides
the substantially high prediction accuracy, it is worthy to emphasize three points below.
First, experimental results demonstrate the superiority of the proposed metric on the BID
database over state-of-art blind sharpness measures. Second, as far as we know, the pro-
posed metric is the first to propose blind quality assessment based on hypercomplex singular
value decomposition, which can well model realistic blurred images. Third, the proposed
BQSVD metric only utilizes singular values to quantify the visual distortions. In the future
work we will combine singular vectors together to evaluate the quality of camera images.
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